Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Comment on $\mu_{1,3}$-azido-diazido-tetrakis(1,10-phenanthroline)dicopper(II) azide tetrahydrate

Ponraj Prabakaran \dagger

RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
Correspondence e-mail: praba@rtc.riken.go.jp
Received 2 January 2002
Accepted 14 January 2002
Online 12 March 2002
The supramolecular structure of the title dimeric azido complex of copper(II), $\left[\mathrm{Cu}_{2}\left(\mu_{1,3}-\mathrm{N}_{3}\right)\left(\mathrm{N}_{3}\right)_{2}(\text { phen })_{4}\right]\left(\mathrm{N}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (phen is 1,10-phenanthroline, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$) [Cheng, Hu, Wang \& Ye (2002). Acta Cryst. C58, m12-m13], which was originally described in terms of hydrogen-bonded chains, has been reinterpreted as two-dimensional hydrogen-bonded sheets built from $R_{6}^{4}(12)$ and $R_{10}^{10}(28)$ rings, taking into account the complete hydogen-bonding pattern.

Comment

In a recent paper, Cheng et al. (2002) reported a dimeric azido complex of copper(II), viz. $\quad\left[\mathrm{Cu}_{2}\left(\mu_{1,3}-\mathrm{N}_{3}\right)\left(\mathrm{N}_{3}\right)_{2}(\text { phen })_{4}\right]-$ $\left(\mathrm{N}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Although the correct formula was given, the molecular unit was described as being comprised of a dimeric cation, two azide anions and four water molecules. However, re-examination of the structure using the deposited coordinates shows that the molecular unit possesses a dimeric cation along with only one azide anion and four water molecules. This is evident from the fact that both the central N2 and N11 atoms of the two azide ions lie on the special positions at $\left(0,0, \frac{1}{2}\right)$ and $(0,0,0)$, respectively.

The authors also showed that there were hydrogen-bonding and aromatic $\pi-\pi$ interactions producing, respectively, a onedimensional chain and a two-dimensional supramolecular array. However, re-examination using PLATON (Spek, 2001) clearly reveals further relatively strong hydrogen bonds that were overlooked in the original report, namely the $\mathrm{O} 1 W$ $\mathrm{H} 1 W A \cdots \mathrm{O} 2 W^{\mathrm{i}}$ and $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{~N} 10^{\mathrm{i}}$ hydrogen bonds [symmetry code: (i) $1-x,-y,-z$]. These intermolecular hydrogen bonds are involved in the formation of a twodimensional sheet consisting of $R_{6}^{4}(12)$ and $R_{10}^{10}(28)$ rings (Fig. 1) (Etter, 1990; Bernstein et al., 1995). The $R_{6}^{4}(12)$ rings adopt a chair conformation and if the weak O1W$\mathrm{H} 1 W A \cdots \mathrm{O} 2 W^{\mathrm{i}}$ component of the nearly planar three-centre hydrogen-bonding system is also considered, then this ring is

[^0]itself divided into three smaller rings (Fig. 1), one of the $R_{4}^{4}(8)$ type and two of the $R_{2}^{2}(4)$ type.

Thus, the structure is now correctly described with a complete hydrogen-bonding pattern which dominates the overall structure and plays an important role in the crystal packing (Jeffrey, 1997).

Figure 1
Part of the crystal structure depicting a two-dimensional sheet built from large and small hydrogen-bonded rings. Atoms labelled with an asterisk ${ }^{(*)}$, hash (\#) and dollar sign (\$) are at the symmetry positions ($-x,-y$, $-z),(1-x,-y,-z)$ and $(-x,-y, 1-z)$, respectively.

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{~N} 10$	0.94	2.25	$2.792(7)$	116
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 2 W^{\mathrm{i}}$	0.94	2.53	$3.369(6)$	149
O1 $W-\mathrm{H} 1 W B \cdots \mathrm{~N} 1$	0.94	2.24	$2.908(6)$	128
O2 $W-\mathrm{H} 2 W A \cdots \mathrm{~N} 10^{\mathrm{i}}$	0.94	2.33	$3.245(8)$	163
O2 $W-\mathrm{H} 2 W B \cdots \mathrm{O} 1 W$	0.94	1.92	$2.857(6)$	178
Symmetry code: (i) $1-x,-y,-z$.				

The author wishes to thank the referees for their helpful suggestions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1188). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cheng, Y.-Q., Hu, M.-L., Wang, S. \& Ye, M.-D. (2002). Acta Cryst. C58, m12m13.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mu_{1,3}$-Azido-diazidotetrakis(1,10-phenanthroline)dicopper(II) azide tetrahydrate

Ya-Qian Cheng,* Mao-Lin Hu, Shun Wang and Ming-De Ye

Department of Chemistry, Wenzhou Normal College, Wenzhou, 325027, People's Republic of China
Correspondence e-mail: hu1964615@263.net

Received 20 July 2001

Accepted 10 October 2001
Online 14 December 2001
In the title compound, $\left[\mathrm{Cu}_{2}\left(\mu-1,3-\mathrm{N}_{3}\right)\left(\mathrm{N}_{3}\right)_{2}(\text { phen })_{4}\right]\left(\mathrm{N}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (phen is 1,10 -phenanthroline, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$), each of the two Cu atoms is surrounded by two N atoms of two azide anions and by four N atoms of two 1,10-phenanthroline ligands $[\mathrm{Cu}-\mathrm{N}$ distances are 1.964 (3), 2.009 (3), 2.018 (3), 2.054 (3), 2.306 (3) and 2.759 (4) \AA], forming an elongated CuN_{6} octahedron. An ideally linear $\mu_{1,3}$-azide anion bridges two Cu atoms to form a dimeric structure with the central N atom located on a centre of inversion. Moreover, the adjacent dimeric units are connected by hydrogen-bond interactions to produce onedimensional chains. A two-dimensional supramolecular array is formed by $\pi-\pi$ interactions between the aromatic rings of 1,10-phenanthroline ligands of adjacent dimeric units.

Comment

Studies on the synthesis and properties of bi- and polynuclear complexes bridged by the pseudohalide azide anion $\left(\mathrm{N}_{3}{ }^{-}\right)$ have attracted much attention in recent years (Ribas et al., 1999; Goher et al., 1998; Zhang et al., 2001) owing to their intriguing structural diversity, potential functions as models for metalloenzymes, and ferromagnetic or antiferromagnetic interactions (Baffert et al., 2001; Aebersold et al., 1998; Zhang

et al., 2000). The azide anion can bind to metal ions in a number of modes, e.g. as a terminal ligand via one nitrogen donor, as a bridge in the $\mu_{1,1}$ manner via one nitrogen donor,

Figure 1
A view (Sheldrick, 1998) of the coordination environment in the title compound shown with 50% probability displacement ellipsoids. [Symmetry code: (i) $-x,-y, 1-z$.]
and in a $\mu_{1,3}$ manner via both of the peripheral donor N atoms (Sheppard et al., 1996). Despite the fact that a substantial array of copper(II)-azido complexes have been synthesized (Goher \& Mautner, 1999), to our knowledge, dimeric singlebridged compounds with 1,10-phenanthroline that have not been reported so far. We report here the preparation and crystal structure of a dimeric azido complex of copper(II), namely $\left[\mathrm{Cu}_{2}\left(\mu_{1,3}-\mathrm{N}_{3}\right)\left(\mathrm{N}_{3}\right)_{2}(\text { phen })_{4}\right]\left(\mathrm{N}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (I).

The molecular unit of the title compound comprises a dimeric $\left[\mathrm{Cu}_{2} \text { (phen }\right)_{4}\left(\mu_{1,3}\right.$-azido $\left.)\left(\mathrm{N}_{3}\right)_{2}\right]^{+}$cation, two azide anions and four water molecules. As shown in Fig. 1, the Cu atom is surrounded by two N atoms of two azide anions and by four N atoms of two 1,10-phenanthroline ligands, forming an elongated CuN_{6} octahedron. The apical $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-$ N 8 bond lengths are much longer than the equatorial $\mathrm{Cu}-\mathrm{N}$ bond lengths, due to the Jahn-Teller effects of $\mathrm{Cu}^{\mathrm{II}}$. An ideally linear $\mu_{1,3}$-azide anion bridges two Cu atoms to form a dimeric

Figure 2
The crystal structure of the title compound.
entity, with the central N atom located on a centre of inversion; the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 6.783 (4) \AA.

It should be noted that hydrogen-bonding interactions and $\pi-\pi$ interactions play an important role in the solid-state structure of (I), as shown in Fig. 2. Adjacent dimeric units are connected by hydrogen-bond interactions $[\mathrm{O} 1 \mathrm{~W} \cdots \mathrm{O} 2 \mathrm{~W}$, $\mathrm{O} 1 W \cdots \mathrm{~N} 10, \quad \mathrm{O} 1 W \cdots \mathrm{~N} 1$ and $\mathrm{C} 9 \cdots \mathrm{~N} 10(1-x,-y,-z)$, producing chains. It is interesting that there are interchain $\pi-\pi$ interactions between the 1,10-phenanthroline rings of adjacent chains (face-to-face separation of ca $3.47 \AA$), which is different from other related compounds (Diaz et al., 2001), resulting in an interesting two-dimensional structure.

Experimental

A mixture of copper(II) nitrate hexahydrate (1.0 mmol), 1,10phenanthroline (2 mmol) and sodium azide (2 mmol) in 60 ml of a water and ethanol mixture ($2: 1 \mathrm{v}: \mathrm{v}$) was stirred for 30 min at room temperature. After 4 d , dark-green crystals of the title compound were obtained in 85% yield.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{~N}_{3}\right)_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]\left(\mathrm{N}_{3}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1088.08$
Triclinic, $P \overline{1}$
$a=8.676$ (5) A
$b=11.843$ (8) \AA
$c=12.279(8) \AA$
$\alpha=80.81(1)^{\circ}$
$\beta=71.74(1)^{\circ}$
$\gamma=84.60(1)^{\circ}$
$V=1181.4(13) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick 1996)
$T_{\text {min }}=0.858, T_{\text {max }}=0.890$
6191 measured reflections
4133 independent reflections

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.529 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 74 \text { reflections } \\
& \theta=1.5-24.3^{\circ} \\
& \mu=0.97 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, dark green } \\
& 0.20 \times 0.15 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.121$
$S=1.03$
4133 reflections
337 parameters
H -atom parameters constrained

3239 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.021
$$

$$
\theta_{\max }=25^{\circ}
$$

$$
h=-9 \rightarrow 10
$$

$$
k=-14 \rightarrow 13
$$

$$
l=-14 \rightarrow 12
$$

50 standard frames at start and end of data collection

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0587 P)^{2}\right. \\
&+0.7136 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

All H atoms were constrained and all constrained $\mathrm{C}-\mathrm{H}$ distances were $0.94 \AA$.

Data collection: SMART1000 (Bruker, 1998); cell refinement: SMART1000; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 3$	$1.964(3)$	$\mathrm{Cu} 1-\mathrm{N} 7$	$2.054(3)$
$\mathrm{Cu} 1-\mathrm{N} 6$	$2.009(3)$	$\mathrm{Cu} 1-\mathrm{N} 8$	$2.306(3)$
$\mathrm{Cu} 1-\mathrm{N} 9$	$2.018(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.759(4)$
			$85.46(11)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 6$	$92.21(12)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 8$	$89.61(13)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 9$	$92.55(12)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$84.32(12)$
$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{N} 9$	$171.83(11)$	$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{N} 1$	$102.36(12)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 7$	$170.71(12)$	$\mathrm{N} 9-\mathrm{C} 1-\mathrm{N} 1$	$83.02(11)$
$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{N} 7$	$81.49(11)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 1$	$168.45(11)$
$\mathrm{N} 9-\mathrm{Cu} 1-\mathrm{N} 7$	$94.53(11)$	$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{N} 1$	$112.5(2)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 8$	$101.94(13)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$123.4(3)$
$\mathrm{N} 6-\mathrm{Cu} 1-\mathrm{N} 8$	$94.74(11)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{Cu} 1$	
$\mathrm{~N} 9-\mathrm{Cu} 1-\mathrm{N} 8$	$77.76(11)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{~N} 10$	0.94	2.25	$2.792(6)$	116
O1 $W-\mathrm{H} 1 W B \cdots \mathrm{~N} 1$	0.94	2.24	$2.908(5)$	128
O2 $W-\mathrm{H} 2 W B \cdots \mathrm{O} 1 W$	0.94	1.92	$2.857(5)$	178
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~N} 10^{\mathrm{i}}$	0.94	2.50	$3.411(7)$	163

Symmetry code: (i) $1-x,-y,-z$.

We are grateful to Professor X.-M. Chen and Dr M.-L. Tong (Zhongshan University) for their valuable guidance and discussion on this project. The project was partially supported by the Education Commission of Zhejiang Province (grant No. 19990525).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1175). Services for accessing these data are described at the back of the journal.

References

Aebersold, M. A., Gillon, B., Plantevin, O., Pardi, L., Kahn, O., Bergerat, P., Von Seggern, I., Tuczek, F., Ohrstrom, L., Grand, A. \& Lelievre-Berna, E. (1998). J. Am. Chem. Soc. 120, 5238-5245.

Baffert, C., Chen, H.-Y., Crabtree, R. H., Brudvig, G. W. \& Collomb, M. N. (2001). J. Electroanal. Chem. 506, 99-105.

Bruker (1998). SMART1000 Operation Manual and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Diaz, C., Ribas, J., Fallah, M. S. E., Solans, X. \& Font-Bardia, M. (2001). Inorg. Chim. Acta, 312, 1-6.
Goher, M. A. S., Abu-Youssef, M. A. M. \& Mautner, F. A. (1998). Polyhedron, 17, 3305-3314.
Goher, M. A. S. \& Mautner, F. A. (1999). Polyhedron, 18, 2339-2344.
Ribas, J., Escuer, A., Montserrat, M., Vicente, R., Cortes, R., Lezama, L. \& Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheppard, C. L., Tandon, S. S., Thompson, L. K., Bridson, J. N., Miller, D. O., Handa, M. \& Lloret, F. (1996). Inorg. Chim. Acta, 250, 227-239.
Zhang, L., Tang, L.-F., Wang, Z.-H., Du, M., Julve, M., Lloret, F. \& Wang, J.-T. (2001). Inorg. Chem. 40, 3619-3622.

Zhang, Z.-H., Bu, X.-H., Ma, Z.-H., Bu, W.-M., Tang, Y. \& Zhao, Q.-H. (2000). Polyhedron, 19, 1559-1556.

[^0]: \dagger The author is currently a postdoctoral fellow.

